• Home
  • About Us
  • Subscribe
  • Advertise
  • Newsroom
  • Sign In
  • Create Account
  • Sign Out
  • My Account
  • Current Issue
    • Latest News
    • Special Report
    • Up Close
    • Opinion
  • News by Sector
    • Real Estate & Construction
    • Banking & Finance
    • Health Care
    • Education & Talent
    • North Idaho
    • Technology
    • Manufacturing
    • Retail
    • Government
  • Roundups & Features
    • Calendar
    • People
    • Business Licenses
    • Q&A Profiles
    • Cranes & Elevators
    • Retrospective
    • Insights
    • Restaurants & Retail
  • Supplements & Magazines
    • Book of Lists
    • Building the INW
    • Market Fact Book
    • Economic Forecast
    • Best Places to Work
    • Partner Publications
  • E-Edition
  • Journal Events
    • Elevating the Conversation
    • Workforce Summit
    • Icons
    • Women in Leadership
    • Rising Stars
    • Best Places to Work
    • People of Influence
    • Business of the Year Awards
  • Podcasts
  • Sponsored
Home » Engineering researchers devise blackout preventer

Engineering researchers devise blackout preventer

Semiconductor made of silicon-carbide said to help absorb surges

May 23, 2013
News Wise

A local power failure in Ohio 10 years ago caused a series of cascading power failures that resulted in a massive blackout that affected 50 million people and caused billions of dollars in damage and lost revenue.

Engineering researchers at the University of Arkansas, in Fayetteville, claim that such blackouts could be prevented in the future, thanks to a new piece of equipment they've developed. The device regulates or limits the amount of excess current that moves through the power grid when a surge occurs.

"We didn't invent the fault current limiter," says Alan Mantooth, Distinguished Professor and executive director of the National Center for Reliable Electric Power Transmission, based at the university. "But we have developed the first one using a silicon-carbide semiconductor device and technology, which we have developed over the past five years. The significance of this material cannot be overestimated. It is much more durable and responds so much faster than materials currently used in systems on the U.S. power grid."

A fault current, also known as a surge, occurs when too much current flows through the electrical power grid in an uncontrolled manner. A fault current is typically caused by an accident or unintended event, such as lightning or contact between power lines and trees. These events cause short-circuits, which result in a rapid increase in the electricity drawn from power sources within the grid.

When those sources don't have extra power to give, cascading or rolling blackouts can occur. This is what happened in Ohio, much of the northeast United States and parts of Canada in 2003.

A fault current limiter can be thought of as a giant surge protector. When excess current travels through a power line, the limiter absorbs it and then sends only what is necessary farther down the line, Mantooth says. The system thus ensures uninterrupted service when the fault is intermittent.

Most consumers wouldn't even detect a problem, Mantooth asserts. Furthermore, if the fault is more permanent and will require repair to power lines, the device then opens much like a normal circuit breaker, which would thus prevent further damage due to excess current, he says.

Proper coordination and device placement will prevent cascading outages, he says.

"This device really can mean the difference between 25,000 customers or 5 million customers being affected," Mantooth asserts.

The Arkansas researchers worked with silicon-carbide, a semiconducting material that is touted to be stronger and faster than conventional materials used in the power grid. High-speed switching devices within the limiter rapidly insert energy-absorbing impedance into the circuit or use advanced control techniques to limit the fault current, Mantooth says.

Silicon-carbide has other benefits as well. Its properties allow for extremely high voltage, and it is a good thermal conductor, which means that it can operate at high temperatures without requiring extra equipment to remove heat. Overall, use of the material will reduce the mass and volume of equipment needed on a power grid, Mantooth claims.

He says he en-visions the device working in concert with circuit breakers on individual buildings, especially critical facilities such as hospitals. It could also serve neighborhoods, where one limiter could regulate current and thus preserve power for many houses. Depending on the size of the building or neighborhood, devices would vary in terms of amperage and voltage.

Mantooth says the Arkansas's system, and fault current limiters in general, are examples of devices that will make and serve a "smart" grid, meaning they will play an integral role in the U.S. Department of Energy's vision for a more efficient and more reliable power grid.

The National Center for Reliable Electric Power Transmission is funded as part of the federal government's focus on research and development on smart grid and renewable technologies.

The center is one of only a few university-based research centers chosen by the Energy Department to investigate electronic systems to make the nation's power grid more reliable and efficient.

The Energy Department has funded the center since 2005.

    Up Close
    • Related Articles

      Students mix career courses, traditional academic tracks

      Engineers aim to develop more cost-efficient solar panels

      Designing homes that cater to nation's aging population

    News Wise

    Mayo Clinic seeks to dispel myths about ovarian cancer

    More from this author
    Daily News Updates

    Subscribe today to our free E-Newsletters!

    SUBSCRIBE

    Featured Poll

    What is Spokane's most iconic historic building?

    Popular Articles

    • Stephanie vigil web
      By Karina Elias

      Catching up with: former news anchor Stephanie Vigil

    • Rite aid3 web
      By Journal of Business Staff

      Two Spokane Rite Aid stores to close

    • 40.13 fc art
      By Tina Sulzle

      $165 million development planned at CDA National Reserve

    • Stcu ceo lindseymyhre web
      By Journal of Business Staff

      STCU names new president, CEO

    • Centennial lofts
      By Erica Bullock

      Large Spokane Valley residential project advances

    • News Content
      • News
      • Special Report
      • Up Close
      • Roundups & Features
      • Opinion
    • More Content
      • E-Edition
      • E-Mail Newsletters
      • Newsroom
      • Special Publications
      • Partner Publications
    • Customer Service
      • Editorial Calendar
      • Our Readers
      • Advertising
      • Subscriptions
      • Media Kit
    • Other Links
      • About Us
      • Contact Us
      • Journal Events
      • Privacy Policy
      • Tri-Cities Publications

    Journal of Business BBB Business Review allianceLogo.jpg CVC_Logo-1_small.jpg

    All content copyright ©  2025 by the Journal of Business and Northwest Business Press Inc. All rights reserved.

    Design, CMS, Hosting & Web Development :: ePublishing